… to write about, but school keeps me busy at the moment.

## Commutation Relations in Markets

September 8, 2009To derive commutation relations in microeconomics we first have to reach sure ground. What is a minimal set of assumptions we need to derive something interesting, but still comprehensive enough to describe something meaningful?

In a market, it is definitely safe to assume that we have goods for some number . This goods are being traded and therefore we need to talk about prices and demand. Call the price of good and the demand for good and let . What else do we need?

Sure, we need a lot more, but not now! As we have seen in Scientifc Laws all we need now is a symmetry between price and demand. The key to this symmetry is found in any basic text book like e.g. *Microeconomic Theory* by A. Mas-Colell, M.D. Whinston and is called invariance of demand under price-scaling. What is meant by that? Let me just give you an example. When continental europe introduced the Euro currency, many nations swapped their national currency for the new Euro. In Germany, 1 Euro was worth 1.95583 Deutsche Mark. All prices, wages, debts aso. where scaled by . The day after, no increase of demand for fridges, cars, credits aso. was observed. That was no surprise for economists. Where should a change of demand come from? A redefinition of the currency is not enough to generate demand. That is generally believed and a pillar in the following argumentation.

Just for the sake of completeness let me emphasize that price scaling, as introduced above form a group. Whenever we scale by a factor and then scale by a factor we obtain a scaling by the factor . Scaling with 1 is the neutral element and for each scale factor we can go back by scaling with .

As mathematicians, we often represent abstract groups (like the above price-scaling) as linear operators acting on some vector space. To that purpose, we choose the state of the market to be given by a non-zero vector in a Hilbert space with inner product denoted by . Of course, in the moment you can think of as a finite dimensional Hilbert space or . On the other hand, it is always good to be suspicious and fixing the dimension to be finite might be premature. Observables are self-adjoint operators on this Hilbert space and satisfy the following axioms:

A positive observable on is an observable with for all in the domain of .

By a famous result of E. Noether, symmetries and invariants are closely tied together. What are the market invariants of the asymmetric market under the price-scaling symmetry? To see this, let be a strongly continuous family of unitary operators on such that

The family satisfies the following properties for all and :

Define and observe

This yields to be a strongly continuous group of unitary operators acting on . Thus, the theorem of Stone ensures the existence of a skew-adjoint generator . Set and with it follows that

Evaluation at yields

Since a generator commutes with the strongly continuous group it generates it is easily seen that also commutes with for any . Hence represents a market invariant under price-scaling.

Now we derive an economic interpretation of . We know already that represents a market invariant under price-scaling for any . Since is skew-adjoint and needs to be an observable, we get that and for some . Furthermore, since scaling of one price does not influence scaling of the others (i.e., for ) we can use (1) and obtain

The operator is an observable and is invariant under price-scaling. Economic intuition therefore leads us to identify this operator with the demand respectively excess demand for good if . The real parameter is identified as endowment. The other real parameter represents a new feature. Intuitively it measures the difference of first selling and then buying a good versus first buying and then selling that good.

The observations in the last paragraph yield the final axioms.

for a fixed real .

There are still a lot of things to say, e.g. on how measurements are done, on the dimension of the Hilbert space , on representations of demand and price as operators and on a comparison to the commutation relations of quantum mechanics. Stay tuned …

## Scientific Laws

September 2, 2009As I have told you earlier, my guest is very sceptical about our scientific achievements. What follows are the notes I took, when he gave me a short summary of what he considers ‘our strategy’.

In modern understanding of science, the fundamental laws seem to be consequences of various symmetries of quantities like time, space or similar objects. To make this idea more precise scientists often use mathematical arguments, thereby choosing some set as state space encoding all necessary information on the considered system. The system then is thought to evolve in time on a differentiable -dimensional path for all and . Quite frequently there is a so-called Lagrange function on the domain and a constraint function on the same domain. The path is required to minimizes or maximizes the integral

under the constraint

(Under some technical assumptions) a path does exactly that, if it satisfies the **Euler-Lagrange equations**

for some function depending on .

Define and observe that (under suitable assumptions) this transformation is invertible, i.e. the can be expressed as functions of and . Next, define the **Hamilton operator**

as the **Legendre transform** of . The Legendre transformation is (under some mild technical assumptions) invertible.

Now, (under less mild assumptions, namely **holonomic constraints**) two things happen. The **canonical equations**

are equivalent to the Euler Lagrange equations. Here denotes the commutator bracket . Furthermore, if does not explicitly depend on time, then is a constant. That is the aforementioned **symmetry**. , the energy, is invariant under time translations.

Given all that, the solution of the minimisation or maximisation problem can then be given (either in the Heisenberg picture) as

or (in the in this case equivalent SchrÃ¶dinger picture,) as an equation on the state space

This description is equivalent (under mild technical assumptions) to the following initial value problem:

where the operator is the ‘law’. More technically, the law is the generator of a strongly continuous (semi-)group of (in this case linear and unitary) operators acting on (the Hilbert space) . As an example of this process he mentioned the SchrÃ¶dinger equation governing quantum mechanical processes.

His conclusion was that the frequently appearing ‘technical assumptions’ in the above derivation make it highly unlikely for laws to exist even for systems with, what he calls, no emergent properties. ‘If that was true’, I thought ‘then … bye bye theory of everything!’ He explained further, that under no reasonable circumstances it is possible to extrapolate these laws to the emergent situation. I am not sure, whether I understand completely what he means by that, but his summary on how we find scientific laws is in my opinion way too simple. It can’t be true and I told him.

With just a couple of ink strokes he derived the commutation relations for exchange markets from microeconomic theory. That left me speechless, since I always thought, that there cannot be ‘market laws’. Markets are on principle unpredictable! They are, or?